
Towards Understanding Fine-Grained Programming Mistakes
and Fixing Patterns in Data Science

WEI-HAO CHEN, Purdue University, USA
JIA LIN CHEOH, Purdue University, USA
MANTHAN KEIM, Purdue University, USA
SABINE BRUNSWICKER, Purdue University, USA
TIANYI ZHANG, Purdue University, USA

Programming is an essential activity in data science (DS). Unlike regular software developers, DS programmers

often use Jupyter notebooks instead of traditional IDEs. Moreover, DS programmers focus on statistics, data

analytics, and modeling rather than writing production-ready code following best practices in software

engineering. Thus, in order to provide effective tool support to improve their productivity, it is important

to understand what kinds of errors they make and how they fix them. Previous studies have analyzed DS

code from public code-sharing platforms such as GitHub and Kaggle. However, they only accounted for code

changes committed to the version history, omitting many programming mistakes that are resolved before

code commits. To bridge the gap, we present an in-depth analysis of the fine-grained logs of a DS competition,

which includes 390 Jupyter Notebooks written by 67 participants over six weeks. In addition, we conducted

semi-structured interviews with 10 DS programmers from different domains to understand the reasons behind

their programming mistakes. We identified several unique programming mistakes and fixing patterns that were

not reported before, highlighting future opportunities for designing new tool support for DS programming.

CCS Concepts: • Software and its engineering → Development frameworks and environments;
Software maintenance tools.

Additional Key Words and Phrases: Computational Notebook, Data Science, Programming Practice

ACM Reference Format:
Wei-Hao Chen, Jia Lin Cheoh, Manthan Keim, Sabine Brunswicker, and Tianyi Zhang. 2025. Towards Under-

standing Fine-Grained Programming Mistakes and Fixing Patterns in Data Science. Proc. ACM Softw. Eng. 2,
FSE, Article FSE082 (July 2025), 23 pages. https://doi.org/10.1145/3729352

1 INTRODUCTION
Data Science (DS) plays an important role in providing data-driven insights for decision-making in

different domains, such as finance, retail, and marketing. Programming is an essential activity in

data science. Data scientists need to write code for data cleaning, analysis, modeling, visualization,

etc. However, compared with regular software developers, many data scientists are not specialized

in programming [1, 38]. Their expertise lies more in statistics, information science, and target

domains such as finance and marketing. Furthermore, data scientists often use computational

notebooks, such as Jupyter Notebook [39, 86] and R Markdown [73, 84], for programming. Unlike

conventional programming environments, programs in computational notebooks are organized as

Authors’ addresses: Wei-Hao Chen, chen4129@purdue.edu, Purdue University, USA; Jia Lin Cheoh, chen4129@purdue.edu,

Purdue University, USA; Manthan Keim, chen4129@purdue.edu, Purdue University, USA; Sabine Brunswicker, sbrunswi@

purdue.edu, Purdue University, USA; Tianyi Zhang, tianyi@purdue.edu, Purdue University, USA.

Please use nonacm option or ACM Engage class to enable CC licenses

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTFSE082

https://doi.org/10.1145/3729352

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0003-9108-8473
HTTPS://ORCID.ORG/0000-0003-4626-5509
HTTPS://ORCID.ORG/0000-0002-3582-5091
HTTPS://ORCID.ORG/0000-0001-8631-0955
HTTPS://ORCID.ORG/0000-0002-5468-9347
https://doi.org/10.1145/3729352
https://orcid.org/0009-0003-9108-8473
https://orcid.org/0000-0003-4626-5509
https://orcid.org/0000-0002-3582-5091
https://orcid.org/0000-0001-8631-0955
https://orcid.org/0000-0002-5468-9347
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3729352

FSE082:2 Chen et al.

a collection of cells, which can be executed in a non-linear order [17, 67]. This facilitates a mix of

live coding and visualizations [78], making them ideal for data exploration and analysis [70].

Given these differences between DS programming and conventional programming, it is crucial

to understand what kinds of programming mistakes data scientists make and how they fix these

errors, in order to develop effective tool support for data science. Previous studies [12, 24, 55, 56, 59]

have analyzed Jupyter Notebooks mined from GitHub or Kaggle. However, these notebooks only

provide static snapshots of the code written by DS programmers in the version history. They omit

the mistakes that were caught and fixed before committing to the version history.

To the best of our knowledge, no existing studies have investigated the error distribution,

debugging activities, and fixing patterns of data scientists. To bridge this gap, we organized a DS

competition over a period of six weeks and instrumented Jupyter notebooks used by the participants.

We collected fine-grained programming and debugging information from 390 Jupyter Notebooks

written by 67 participants. Compared to previous work, we analyzed the internal system logs,

including fine-grained changes made by the participants, the execution histories of each cell, and

the output logs of each execution. We summarized participants’ debugging and fixing activities in

a state diagram and found that they adopted a variety of strategies beyond editing the erroneous

cell, often in an iterative manner, to debug and fix those errors.

Our study reveals several new findings. First, more than half of the coding errors occurred in the

data exploration (32%) and data preprocessing (26%) stages of a DS workflow. Second, a significant

portion of errors are ValueErrors (21%) and NameErrors (20%). This is in contrast to general Python

scripting, where TypeError is the most common error [53]. While many errors can be fixed locally

in the same code cell, a non-trivial portion of errors (30%) requires editing another cell (i.e., global
fixes). Among all local fixes, the most common editing strategy to fix errors is Change Parameters
(35%), followed by Fix Syntax Errors (12%), and Rename Variable (12%). In this work, we focused

on erroneous cells that produced compilation or runtime errors. Other errors, such as generating

incorrect graphs, remain an interesting avenue for future work, as detailed in Section 7.

To gain a deeper understanding of why DS programmers make these errors and what kind of

tool support they need, we conducted semi-structured interviews with 10 DS programmers (6 from

industry and 4 from academia). Most interviewees (8/10) identified data preprocessing and data

exploration as themost error-prone stages in the DSworkflow. Common issues in data preprocessing

include dirty data (9/10), unclear data formats (8/10), and lack of domain knowledge (5/10). In terms

of issues in data exploration, unfamiliarity with the dataset (6/10) and too many columns (4/10) are

the reasons why it is error-prone. Additionally, complex cell dependency issues could complicate

debugging, as reported by several participants (6/10). We also found DS programmers relied on

print statements and executing cells one by one to narrow down errors.

In summary, this work makes the following contributions:

• Programming Mistake Distribution:We defined a taxonomy of fine-grained coding errors

and reported their distributions in different data science stages.

• Debugging & Fixing Patterns: We provided an in-depth analysis of debugging and fixing

practices in DS programming. We identified 5 distinct debugging operations and examined

the transition states in the debugging traces. Furthermore, we identified 12 fixing patterns

that DS programmers used to fix errors.

• Interview Study: We conducted semi-structured interviews with 10 DS programmers from

industry and academia to understand the reasons behind the observed errors.

• Data:We made publicly available our dataset, scripts, and analysis results for open science:

https://anonymous.4open.science/r/FSE2025-62D6/

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

https://anonymous.4open.science/r/FSE2025-62D6/

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:3

2 BACKGROUND
Jupyter Notebook [3] is a programming environment that allows interactive literate program-

ming [40] and documentation. A notebook is composed of cells. There are three types of cells: code
cells for writing code, markdown cells for documentation, and output cells where plots and results

are rendered. Figure 1 shows an example.

Code

Cell

Output

Markdown

Cell

Index

Fig. 1. An example of a notebook.

Although code cells are arranged in a top-

down manner, they can be executed in any order.

When executing code cells, the Python kernel

in Jupyter Notebook maintains the execution

history and the runtime values of variables in

previously executed code cells. In Jupyter Note-

books, each code cell is labeled with a number

on the left, indicating the index of the cell in the

execution history. For example, in Figure 1, the

programmer first executed the two code cells,

made some edits to the second code cell, and

then re-executed the second cell. As a result, the

first code cell is indexed as [1], while the second
code cell is indexed as [3] since it was executed

twice. In this work, we focused on code cells as

our goal is to identify programming mistakes

and fix patterns in code. For simplicity, we refer

to a code cell as a cell henceforth.

3 RESEARCH QUESTIONS
We investigate the following research questions

in this work:

• RQ1. What kinds of mistakes do data science programmers make when writing code? Previous
work [5, 20] focuses on collecting bugs and observing programming practices using coarse-

grained data mined from GitHub and Stack Overflow. However, these sources typically

contain snapshots of notebooks that omit intermediate errors that DS programmers made

and fixed before code commits. Furthermore, these studies do not provide insights into which

stages of the data science workflow are more error-prone. To answer this RQ, we collected

data from a six-week data science competition and conducted an in-depth analysis of the

errors made by our participants. We analyzed the frequency of each error type and their

distribution across different data science stages. We found most errors occur in the early

stages, such as data preprocessing and data exploration, as detailed in Section 5.1.

• RQ2.What activities and operations do data science programmers perform to diagnose those
programming mistakes? Several studies have explored debugging behaviors in traditional

IDEs [7, 9]. However, Jupyter Notebook is significantly different from these environments,

e.g., allowing running cells in an arbitrary order, no breakpoints, no stepping through,

etc. Currently, there is a lack of studies and datasets that examine debugging practices in

data science. To answer this RQ, we analyzed DS programmers’ debugging behavior and

summarized them in a state diagram, as shown in Figure 5. We found that debugging activity

is highly iterative, as discussed in Section 5.2.

• RQ3.What kinds of edits do data science programmers make to fix errors? Previous studies [45,
87] have explored fixing patterns in debugging Python scripts. Still, none of them focus on

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:4 Chen et al.

fine-grained editing patterns in computational notebooks. To answer this RQ, we identified

a taxonomy of 12 frequent fixing patterns. Moreover, we analyzed their usage frequency,

most co-occurring fixing patterns, and usefulness in solving different errors. We found that

Changing Parameters is the most frequently used fix pattern, as discussed in Section 5.3.

RQ4.Why do data science programmers make those errors and what kinds of tool support do
they need? In previous RQs, we analyzed error distributions and debugging & fixing patterns

in our DS competition dataset. However, these questions did not help us understand the

reasons behind these errors and if these patterns apply beyond the DS competition setting.

To address this RQ, we conducted follow-up interviews with 10 DS programmers (6 from

industry and 4 from academia) from different domains (e.g., IT, Finance, Insurance, etc.)

to gain a deeper understanding of their debugging practices and challenges. Our results

show that complex cell dependencies could hinder the debugging process. DS programmers

desired tools to manage complex cell dependencies and track hidden variable states to prevent

unexpected behaviors, as discussed in Section 5.4.

4 METHODOLOGY
To answer the RQs, we organized a six-week online data science competition and collected fine-

grained programming information through Jupyter Notebook instrumentation. We then conducted

follow-up interviews to gain a deeper understanding of the programming hurdles and needs of DS

programmers. Figure 2 provides an overview of our analysis procedure.

Analyze Notebook
Statistics

Fix Pattern

Debugging
 Activity

Error
 Distribution

Dataset Collection Fine-grained Debugging Analysis

Follow-up
Interview

Study

DS competition

Collect Notebooks
and Logs

Data Cleaning Locating Errors
& Fixes

Error Identification

Run the
Notebooks

Fig. 2. An Overview of the Analysis Procedure.
4.1 Data Collection
We organized a six-week online DS competition and advertised it through social media and emails.

Participants were asked to develop a data science project to build and evaluate a prediction model

using an unprocessed, real-world dataset from a state department. We gave them a document about

the dataset and the end goal. They needed to do the planning themselves and build the DS pipeline

from scratch. Thus, tasks such as data preprocessing, feature engineering, and modeling, are integral

parts of this project. This mimics a common working scenario for data scientists—they receive raw

data from a customer or manager and use statistical methods to analyze it [38]. We chose prediction

rather than other end goals (e.g., insight discovery) because prediction is a common end goal in

data science [71] and provides a clear metric for evaluating participants’ performance.

To encourage participation, the top three winners would receive $500 awards. While many people

signed up for the competition and actively participated, 67 successfully completed the competition,

i.e., building a model that is runnable on our held-out test set. We recruited participants from diverse

backgrounds, including 24% from Computer Science, 20% from Business, 20% from Information

Systems, 8% from Data Science, 6% from Mathematics/Statistics, 4% from Mechanical Engineering,

4% from Electrical and Computer Engineering, and 14% from other majors. These participants

included undergraduate students (22%), master’s students (33%), Ph.D. students (16%), industry

practitioners (25%), and others (4%). They had a median of 2.5 years of programming experience.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:5

Since our competition allowed participants to re-submit their notebooks, we collected a total of

1,310 notebooks from these 67 participants.

Jupyternotebok Instrumentation.We asked participants to use an instrumented Jupyter notebook

towrite code.We used IPython’s build-in commands [2] to track fine-grained cell edits and execution

history. Specifically, our instrumented Jupyter Notebook took a snapshot of each cell whenever the

programmer executed a cell, as shown in Figure 3. This instrumentation design was inspired by a

previous finding that DS programmers often made frequent edits and re-executed cells to check

intermediate results [86].

Execute Cell 1

Execute Cell 2

Execute Cell 1

Modify Cell 2

Modify Cell 1

Actions Execution History

Modify Cell 1

{}
Cell 1

Cell 2
{

{ }

{ }

{ }

}v1

v1

v1

v1

v1

v1

v1 v2

{ }v1v1 v2

Execute Cell 2 { }v1 v2v2v1

log

log

log

log

Fig. 3. An Example of Execution History.

An alternative design could be to capture snapshots at

fixed intervals, but this would capture incomplete edits if a

programmer was still editing at the end of an interval. This

alternative design could also lead to redundant snapshots if

no edits were made during a period of time. Another alter-

native design could be to collect keystroke data. However,

it would cause excessive I/O overhead and raise privacy con-

cerns. Thus, after careful consideration, we chose the current

instrumentation design.

Data Cleaning. We carefully filtered out any duplicate sub-

missions or incomplete notebooks from the 1,310 notebooks. Since some participants made more

re-submissions than others, we did not want their mistakes to be over-represented in our analy-

sis. Thus, we performed a downsampling to sample at most 6 notebook submissions from each

participant. Note that we chose to analyze multiple submissions from a participant rather than

only the final submission, since we observed that participants typically did not make the same

mistakes again in later submissions. Only analyzing the final submission would miss those early

mistakes. Moreover, the final submission often involve small edits such as hyperparameter tuning.

Participants barely made coding mistakes in the final submission. In the end, we sampled 390

notebook submissions. We determined our sample size using Cochran’s formula [41, 88] with a

95% confidence interval and a 5% margin of error.

Min Med Max

Code Cells 4 24 318

Imported Modules 0 8 31

Lines of Code 6 73 1372

Lines of Comments 0 3 292

Cyclomatic Complexity 1 1 24

Cell Coupling 0 14 12694

Table 1. Dataset Statistics

Table 1 shows the statistics of our sample set. Specifi-

cally, # of Code Cells refers to the number of code cells that

appeared in the execution history of a notebook submis-

sion. # of Imported Modules refers to the number of unique

modules imported from third-party packages in a notebook

submission. Cell Coupling measures the interdependency

between cells in a notebook [24].

4.2 Programming Error Identification and Analysis
To answer RQ1, we need to first locate the programming mistakes from the log data. As shown

in Figure 3, our log data contains snapshots of code cells in the execution history but does not

contain the output of each execution due to storage limit. Thus, we re-ran each cell in the history to

identify whether they contained a programming mistake. An erroneous cell is identified if its output

contains an error message. Since some erroneous cells were repeatedly executed and appeared

multiple times in the execution history, we removed duplicated cells that threw the same error

message. In total, we identified 839 unique erroneous cells.

After some manual analysis, we noticed that sometimes, participants made multiple attempts to

fix an error and re-executed the erroneous cell after each attempt. This led to multiple erroneous

cells with slight differences appearing in the execution history, although these cells originated

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:6 Chen et al.

from the same erroneous cell. For such erroneous cells with the same origin, we only kept the first

cell so that we did not inflate the occurrence of their errors in our analysis. Since there were 839

erroneous cells, which was not too many, the first author manually went through them and filtered

the cells that originated from the same cell. This ended up with 529 erroneous cells.

Finally, we need to classify each cell into different stages of the DS workflow to understand

the error distribution. The first author manually inspected the 529 erroneous cells and classified

them into one of the ten DS stages defined by Ramasamy et al. [56], including Data Loading,
Data Preprocessing, Data Exploration, Modeling, Evaluation, Prediction, Visualization, Result Saving,
Comment Only, and Helper Function. While Ramasamy et al. trained a machine learning model

to classify code cells to different DS stages, we chose manual analysis for two reasons. First, the

classification model developed by Ramasamy et al. only achieved 71% F1-score, which would

inevitably introduce classification errors in our analysis. Second, since we only had 529 erroneous

cells to classify, the sample size was feasible for manual classification.

4.3 Debugging Activity Analysis

{ }...
Erroneous Cell

Debugging Trace

Execution History

Fixed Cell

Fig. 4. An Example of a Debugging Trace.

To answer RQ2, we need to analyze what operations

have been performed before fixing an error. For each

erroneous cell, we extract the log data between the

erroneous cell and the corresponding fixed cell in the

execution history. We call this a debugging trace, as
illustrated in Figure 4. Recall that we have identified

the erroneous cells in Section 4.2, but we have not identified the corresponding fixed cells yet. Thus,

for each erroneous cell, the first author manually inspected the subsequent cells in the execution

history to identify the first cell that looks similar to the erroneous cell but no longer throws the

error message.

We identified five basic operations in the debugging traces between the 529 pairs of erroneous

cells and the corresponding fixed cells:

• Rerun Previous Cell indicates that a previous cell, not the erroneous cell, has been re-

executed without any modifications.

• Rerun Erroneous Cell indicates that the original erroneous cell is re-executed without any

changes.

• Edit Erroneous Cell indicates that the programmer edited the erroneous cell.

• Edit Previous Cell indicates that the programmer edited any previous cell, not the erroneous
cell.

• Create New Cell indicates that the programmer created a complete new cell.

Based on these operations, we lifted a state diagram from the 529 debugging traces, as shown in

Figure 5. The start state is an erroneous cell, while the end state is the error being fixed. Each state

in the middle represents a basic operation. The edge between two state nodes is labeled with the

transition probability (i.e., the probability of one state occurring after another state in the data). For

instance, Edit Previous Cell
35%−−−→ Rerun Erroneous Cellmeans that from the 529 debugging traces,

35% of the Edit Previous Cell operation are followed by the Rerun Erroneous Cell operation.

4.4 Fixing Pattern Analysis
To answer RQ3, we need to identify edits performed by participants. While our dataset only includes

529 debugging traces, multiple cells may be edited in a debugging trace and each cell may also

be edited in several locations. Thus, to reduce the manual effort, we built a rule-based method to

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:7

Fix Pattern Inference Rule
Add New Method Call Insert(𝑡𝑜 , 𝑡𝑛, 𝑖) ∧ NodeType(𝑡𝑛 , MethodCall)

Add New Attribute Insert(𝑡𝑜 , 𝑡𝑛) ∧ NodeType(𝑡𝑛 , Attribute)

Change Parameters Update(𝑡𝑜 , 𝑡𝑛) ∧ (NodeType(𝑡𝑛 , Parameters) ∨ NodeType(𝑡𝑛 , ParameterValue)) ∧ (NodeSet(𝑡𝑜) ≠ NodeSet(𝑡𝑛))

Change Key/Index Update(𝑡𝑜 , 𝑡𝑛) ∧ (NodeType(𝑡𝑛 , String) ∨ NodeType(𝑡𝑛 , Number)) ∧ IsInBrackets(NodeValue(𝑡𝑜 , oldVal), NodeValue(𝑡𝑛 , newVal))

Rename Variable Rename(𝑡𝑜 , 𝑡𝑛) ∧ NodeType(𝑡𝑛 , Variable) ∧ NodeValue(𝑡𝑜) ≠ NodeValue(𝑡𝑛) ∧ (NodeSet(𝑡𝑜) ≠ NodeSet(𝑡𝑛))

Remove Method Call Delete(𝑡𝑜) ∧ NodeType(𝑡𝑜 , MethodCall)

Remove Attribute Delete(𝑡𝑜) ∧ NodeType(𝑡𝑜 , Attribute)

Delete Old Lines Delete(𝑡𝑜) ∧ (NumLines(𝑡𝑜) > NumLines(𝑡𝑛))

Add New Lines Insert(𝑡𝑜 , 𝑡𝑛, 𝑖) ∧ (NumLines(𝑡𝑛) > NumLines(𝑡𝑜))

Commented Out Code Update(𝑡𝑜 , 𝑡𝑛) ∧ NodeType(𝑡𝑛 , Comment) ∧ Contains(NodeValue(𝑡𝑜), Trim(NodeValue(𝑡𝑛), "#")))

No Changes Equal(𝑡𝑜 , 𝑡𝑛)

Fix Syntax Errors SyntaxError(𝑡𝑜) ∧¬ SyntaxError(𝑡𝑛)

GumTree Edit Predicate Syntactic Predicate Auxilary Predicate
Insert(𝑡𝑜 , 𝑡𝑛, 𝑖) true if node 𝑡𝑛
is inserted as the 𝑖-th child of 𝑡𝑜 .

NodeType(𝑡 , Name) true if the 𝑡 ’s type is Name. Rename(𝑡𝑜 , 𝑡𝑛) true if node 𝑡𝑜 is renamed as 𝑡𝑛 .

NodeValue(𝑡) returns the value of node 𝑡 . IsInBrackets(𝑣) true if the value 𝑣 is within brackets.

Delete(𝑡) true if node 𝑡 is
deleted in the AST tree.

NodeSet(𝑡) returns set of nodes related to 𝑡 . SyntaxError(𝑡) true if there’s a syntax error in node 𝑡 .

Child(𝑡𝑜 , 𝑡𝑛) true if node 𝑡𝑜 is a child of node 𝑡𝑛 . Trim(𝑡 , string) trims leading and trailing characters in 𝑡 .

Update(𝑡𝑜 , 𝑡𝑛) true if node 𝑡𝑜 is
updated with node 𝑡𝑛 .

Contains(𝑡 , 𝑣) true if the node 𝑡 contains the code 𝑣 . NumLines(𝑡) returns number of lines in the string 𝑡 .

Equal(𝑡𝑜 , 𝑡𝑛) true if nodes 𝑡𝑜 and 𝑡𝑛 are equal.

Table 2. Fix Patterns and Inference Rule Implementation

automatically infer the fix patterns based on program differences computed by GumTree [23]. We

describe the details below.

Manual Inspection. To build the rule-based method, we first sampled 100 debugging traces and

followed the open coding procedure in qualitative analysis [10] to identify the patterns to be

inferred. Since each debugging trace may involve edits to multiple cells, we compared the first and

last versions of any cells edited during the debugging trace. Two authors independently inspected

the program differences and summarized the fixes in each debugging trace. After inspecting all

100 traces, they met together, compared the fixes they summarized, and came up with an initial

taxonomy of fix patterns. They continued inspecting more debugging traces together and kept

refining the taxonomy (e.g., adding new patterns, merging existing patterns, renaming patterns,

etc.). They stopped after examining another 100 debugging traces, since the taxonomy converged.

The final taxonomy includes 12 fix patterns, as shown in Column Fix Pattern in Table 2.

Pattern Inference Rules For each fix pattern, we designed an inference rule based on the AST

edits computed by GumTree [23]. Column Rule in Table 2 describes the implementation logic for

each inference rule. Each rule is composed of three types of predicates:

• GumTree Edit Predicates. GumTree computes three types of basic edits on AST nodes,

including insert, delete, and update. We represent them in three corresponding logic predicates,

as described in Column GumTree Edit Predicate in Table 2.

• AST Node Predicates. AST node predicates describe the characteristics of AST nodes, such

as AST node types, values, and structural relationships. Column Syntactic Predicate in Table 2
lists the syntactic predicates used to implement the inference rules.

• Auxiliary Predicates.Auxiliary predicates are helper functions that check specific properties
of source code or perform specific operations on different types of data, such as checking

whether there is a specific syntax error in source code and timing a string value. Column

Auxilary Predicate in Table 2 lists the semantic predicates used to implement the inference

rules.

These predicates serve as the building blocks for defining the inference rule for each fix pattern,

as illustrated in Column Inference Rule in Table 2. For example, Change Parameters first examines

whether any changes have been made to either the parameter name or the value of an existing

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:8 Chen et al.

parameter. Then it checks the node sets of both to ensure that an update is made in one of these

two sets.

Accuracy of the Pattern Inference Rules. To evaluate our rule-based pattern inference method,

we sampled 230 debugging traces not included in the initial manual inspection as the validation

set. This sample size is statistically significant with a confidence level of 95% and a margin of error

of 5%. To reduce bias, the second author, who was not involved in the initial manual inspection,

labeled the fix patterns in this validation set. The ground truth contains 335 manually labeled fix

patterns. Overall, our method infers the fix patterns with 83% precision and 84% recall.

4.5 Interview Study
To answer RQ4, we conducted semi-structured interviews to understand why the observed errors

happen and what kinds of support do DS programmers need. We provide details of our interview

protocol, participants’ backgrounds, and analysis procedure in the following subsections.

Interview Protocol.We followed guidelines in empirical software engineering [60, 63] to design a

semi-structured interview
1
. The interview beganwith a short introduction to our study and a request

for permission
2
. Then, we asked high-level questions about: (1) the background of the interviewees,

such as their current job and how long they have been working in DS, (2) common errors occurring

in different DS stages, (3) their programming and debugging practices within Jupyter Notebooks,

and (4) debugging features and support needed. We interviewed 10 DS programmers from both

industry and academia. Each interview took between 30 to 40 minutes. The interviews were

recorded and then transcribed for further analysis.

Participants. We recruited 10 data science (DS) practitioners through a combination of personal

networks, industrial collaborations, and social media platforms. To ensure a diverse sample, we

included participants from various education backgrounds and data science roles. Regarding their

education backgrounds, six of them had a degree in Computer Science, two in Statistics, one in

Finance, and one in Accounting. Regarding their roles, four of themwere PhD students who perform

extensive data analysis and modeling in their research, two were data engineers, two were software

engineers, one was a data scientist, and one was a quantitative analyst. In terms of programming

experience, two participants reported 2-5 years, while eight had more than 5 years. Data science

experience varied among participants: one had less than 2 years, four had 2-5 years, and five had

more than 5 years of experience.

Analysis.We transcribed interview recordings to text using an audio transcription feature provided

by Microsoft audio transcription service. The first author conducted an open-coding phase [81]

using a professional qualitative data analysis software called NVivo. This coding phase was done

thoroughly by highlighting everything that is relevant or interesting. A code was generated by

summarizing a relevant phrase or sentence with a short descriptive text.
3
The first author then

conducted an inductive thematic analysis [14], grouping related codes into themes. We observed

a data saturation at interview #8. After interview #8, no additional themes emerged from the

remaining interviews. These emerging themes were regularly discussed with the entire research

team. Additionally, the second author independently inspected the generated codes and themes,

validating how the raw data supported them and adjusting their descriptions and boundaries.

Finally, the two authors refined the codes and themes together over multiple sessions, addressing

any disagreements.

1
Interview Guide: https://anonymous.4open.science/r/FSE2025-62D6/InterviewStudy/Interview.pdf

2
Consent Form: https://anonymous.4open.science/r/FSE2025-62D6/InterviewStudy/Consent.pdf

3
Code Book: https://anonymous.4open.science/r/FSE2025-62D6/InterviewStudy/Code_Book.md

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

https://anonymous.4open.science/r/FSE2025-62D6/InterviewStudy/Interview.pdf
https://anonymous.4open.science/r/FSE2025-62D6/InterviewStudy/Consent.pdf
https://anonymous.4open.science/r/FSE2025-62D6/InterviewStudy/Code_Book.md

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:9

5 RESULTS
5.1 RQ1. Common Errors Made by DS programmers

Stage AttrErr TypeErr ValErr NameErr NotFnd BadReq KeyErr SyntaxErr IndexErr ModNotFnd Misc Total

Data Loading 9 3 0 25 28 27 6 2 1 0 0 101

Date Preprocessing 25 17 32 25 0 0 25 12 4 0 0 140

Data Exploration 24 18 37 31 0 0 20 22 14 0 4 170

Modeling 1 0 8 3 0 0 1 1 0 0 1 15

Prediction 0 1 2 1 0 0 0 1 0 0 2 7

Evaluation 2 0 0 1 0 0 0 0 0 0 0 3

Visualization 9 5 13 16 0 0 3 8 0 0 2 56

Result Saving 0 0 0 0 0 0 0 0 0 0 0 0

Comment Only 0 0 0 0 0 0 0 0 0 0 0 0

Helper Functions 0 0 19 1 0 0 0 4 0 12 1 37

Total 70 44 111 103 28 27 55 50 19 12 10 529

Table 3. Error Distribution across DS Stages. Cells in red indicate the most frequent error in each stage.
We report the common error types based on the error messages of the 529 errors below:

• ValueError (21%): This error occurs when a function receives an argument with the correct

data type but an inappropriate value. The example below shows a value error that occurs

when feeding the wrong length of the prediction array to the fit function.

1 from sklearn.linear_model import LinearRegression
2 import numpy as np
3 X = np.array([[1, 2], [2, 3], [3, 4]])
4 # y should be of length 3
5 y = np.array([1, 2])
6 model = LinearRegression()
7 model.fit(X, y)

• NameError (20%): This error occurs when a variable, function, or class cannot be found. This

error can occur frequently in Jupyter Notebooks. The non-linear execution of cells in these

notebooks can lead to undefined variables, functions, or classes.

1 import pandas as pd
2 df = pd.DataFrame({'col1': [1, 2, 3]})
3 # Dataframe is not imported
4 print(dataframe)

• AttributeError (12%): This error occurs when programmers attempt to access a method or

attribute that does not exist in an object. This error occurs frequently because DS libraries

often share similar functions. For instance, confusion may arise between the functions in

NumPy [72] and Pandas [47]. The following example shows amisuse of the to_frame function
of Pandas on a Numpy array.

1 import numpy as np
2 import pandas as pd
3 arr = np.array([1, 2, 3, 4, 5])
4 # Calling a pandas function on a numpy array
5 arr.to_frame()
6 print(model.coef_)

• KeyError (11%): This error occurs when a dictionary key is not found. For example, when

users try to get a non-existent column in Pandas. The following example shows that an error

occurs when accessing a non-existent column from a dataframe.

1 import pandas as pd
2 df = pd.DataFrame({'col1': [1, 2, 3]})
3 # Accessing a non-existent column.
4 print(df['col2'])

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:10 Chen et al.

• SyntaxError (9%): This error happens for various reasons, such as missing brackets or semi-

colons, misspelled keywords, and incorrect indentation.

• TypeError (8%): This error occurs when an operation or function is applied to an object of an

inappropriate type.

• NotFoundError (5%): This error typically relates to file operations or HTTP requests where

the requested resource is not found.

• BadRequest (5%): This competition allows programmers to access datasets via Google Big-

Query remotely. This error arises when attempting to fetch data from an invalid URL.

• IndexError (3%): This error occurs when programmers try to access an element from a list

using an incorrect index that does not exist.

• ModuleNotFound (2%): This error occurs when a used module is not installed in the system.

• Misc (2%): This category is usually a catch-all for errors that do not occur frequently.

The most commonly encountered errors are ValueError 21% , NameError 20% , and AttributeError

12%. This differs from the general-purpose Python scripting error context, where TypeError is the

most prevalent issue [53, 54]. Errors in DS code often stem from issues such as incorrect data types,

references to undefined variables or data column, and improper use of object attributes. These are

common errors encountered when processing datasets in DS tasks. We provide more implications

in Section 6.2.

Furthermore, Table 3 shows the majority of errors (32%) occur during the Data Exploration stage.

The second largest number of errors (26%) occurs during the Data Preprocessing stage, followed

by the Load Data stage (19%). The error distribution in the early stages of DS tasks also highlights

several design opportunities, as we will discuss later in Section 6.2.

Root Causes and Severity of Errors. To understand the root causes and severity of errors, we

randomly sampled 150 error traces. The first author analyzed each error trace and then performed

open coding. The last author, who was not involved in the initial coding, validated the results

before writing the report. We classified root causes into four primary categories: incorrect API
usage, dataset unfamiliarity, incorrect execution order, and typos or syntactic oversights. The majority

of AttributeError instances were attributed to incorrect API usage (79%), with typos or syntactic

oversights (14%) and execution order issues (7%) also contributing. NameError was mostly caused by

incorrect execution order (73%), while typos accounted for the remaining 27%. KeyError primarily

resulted from dataset unfamiliarity (55%), followed by typos (30%) and incorrect execution order

(15%). Similarly, ValueError was largely due to dataset unfamiliarity (95%), with typos accounting

for 5%. TypeError was mainly caused by dataset unfamiliarity (85%), with incorrect API usage

contributing to the remaining 15%. IndexError usually resulted from dataset unfamiliarity (100%),

while SyntaxError, ModuleNotFoundError, NotFoundError, and BadRequest were mostly attributed to

typos or syntactic oversights (100%).

Error Type Novice Intermediate Expert

ValueErr 23% 23% 19%

NameErr 22% 22% 17%

AttrErr 14% 11% 11%

KeyErr 3% 12% 14%

SyntaxErr 13% 6% 9%

TypeErr 3% 9% 11%

NotFndErr 5% 5% 6%

BadRequest 11% 3% 3%

IndexError 1% 3% 5%

ModNotFnd 2% 3% 2%

Misc 2% 2% 2%

Table 4. Error Types

Impact of Programming Expertise. To analyze the impact

of programming expertise on error types, participants are cat-

egorized based on their programming experience into novices

(less than one year, 𝑁 = 18), intermediate programmers (one

to three years, 𝑁 = 21), and experts (more than three years,

𝑁 = 28). Table 4 presents the error distributions. We conducted

pairwise Wilcoxon Signed-rank tests on the error type distribu-

tions and found no statistically significant differences between

the groups (𝑝-values = 1.0000, 0.8124, and 0.8885, respectively).

The results suggest that programming expertise has a limited

effect on the overall distribution of error types. However, when comparing specific error types,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:11

we found that novice programmers made more errors such as SyntaxError and BadRequest. These

errors are typically associated with syntactic oversights. In contrast, expert programmers were

more prone to TypeError and KeyError. As discussed in the previous paragraph, these two types

of errors were often caused by data unfamiliarity. We suspect this is because professional data

scientists may not spend enough time reading the data documentation or exploring the data but

rather go straight to build the DS pipeline based on their past experience and learn the dataset on

the fly by tinkering [15]. For example, when accessing a column in a data frame, they may simply

type down the column name based on their memory and check if it is correct. If not, they will

quickly try another possible name or look up the data schema. This trial-and-error programming

style is a common practice among experienced programmers [15, 17]. This is also evidenced by

the small number of iterations expert programmers took to fix a TypeError or a KeyError in our

competition (Mean 1.11 and 2.75, respectively).

Answer to RQ1.

529 errors were detected in the sampled dataset, with the majority of them being identified

during the Data Exploration stage (32%), Data Preprocessing stage (26%), and Load Data (19%)

stage. The most frequent errors were ValueError (21%), NameError (20%), and AttributeError

(12%).

5.2 RQ2. Debugging Activities

(362) (152)

(220)

(285)

Erroneous Cell Create New Cell

Frequency

100

200

400

300

500

Edit Previous Cell

(405)

(177)
Edit Erroneous Cell

(362)

Error Fixed

16%
18

%

64%

63%

40%

24%

20%

17%

19
%

16
%

3
5

%

16%

19%

3
5

%

25%

27%

Rerun Erroneous Cell

Rerun Previous Cell

Fig. 5. State Diagram of Debugging Operations.

Figure 5 shows that DS programmers usually make

direct edits to the original erroneous cell when fix-

ing errors. Of all error states, 35% flow to the Edit

Erroneous Cell operation. Of these edits, 64% result in

a successful fix. This is the most straightforward and

common strategy. However, there are also other de-

bugging strategies such as Edit Previous Cell (19%),

Rerun Previous Cell (25%), and Create New Cell (16%).

These operations require editing other cells, meaning

that the root causes of errors are often due to other

cells. We call these edits Global Fix. Our result indi-
cates that a non-trivial of debugging efforts involve

operations outside of editing the erroneous cell (e.g.,

editing previous cells, creating new cells). This under-

scores the importance of understanding the broader

context in which an error occurs. It highlights the

need for debugging tools to not only focus on the

error cell but also consider the overall code structure and flow in a notebook.

Additionally, some operations tend to repeat themselves, for instance, Edit Previous Cell. This

suggests that the debugging process is often iterative in the debugging trace. We also noticed that

many operations are followed by Rerun Previous Cell, suggesting that running the previous cell

is a common strategy for testing after editing. This suggests a need for tool support specific to this

iterative debugging style. We provide more discussion in Section 6.2.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:12 Chen et al.

Answer to RQ2.

To fix errors, programmers not only edit the erroneous cells but also use various debugging

strategies, such as editing the previous cells, rerunning the erroneous/previous cells, and

creating new cells. Additionally, the results show that some debugging operations are iterative

in the debugging trace.

5.3 RQ3. Fixing Patterns Used To Fix Errors
Figure 6 displays the number of iterations in the debugging trace, with an average of 3.59 steps.

This suggests the iterative debugging nature of DS programmers that requires multiple rounds of

edits to fix an error.

1 2 3 4 5 6 7 8 9 10
Iteration

0
20
40
60
80

100
120
140
160

C
ou

nt M
ed

ia
n

Fig. 6. Number of Iterations
Needed to Fix an Error

Moreover, Figure 7a shows the distribution of the fixing patterns.

The most prevalent fixing pattern is Change Parameters, account-
ing for 35% of all fixing patterns. This is followed by Fixing Syntax
Errors (12%), Renaming Variables (12%), Changing Key/Index (10%),

and Using New Methods (7%). These patterns differ from the gen-

eral Python programming context, where changing variable types

and assignment expressions are the most common fix patterns [87].

Changing parameters in function calls in Jupyter Notebooks implies

that DS programmers often refine their computational experiments

by tweaking parameters rather than restructuring code logic.

In addition, we found that these fixing patterns are not mutually exclusive since DS programmers

may apply multiple patterns when fixing errors. For example, a programmer might change a

parameter and then comment out code to fix a bug. The chord diagram in Figure 7b shows how

different fix patterns are used together.

Change Parameters
Fix Syntax Error

Rename Variables
Change Key/Index

Add New Method Call
Add New Lines

Delete Old Lines
Comment Out Code

Remove Method Call
Remove Attribute

Add New Attribute

0 20 40 60 80 100 120 140
Count

(a) The distribution of fixing patterns.

Edit Patterns

Change Parameters

Add New Method Call

Rename Variables

Change Key/Index

Add New Lines

Comment Out Code

Remove Method Call

Delete Old Lines

Add New Attributes

Remove Attributes

(b) Co-occurring fix patterns.

NameError

Change Parameters

Remove Method Call

Rename Variables

Delete Old Lines

Change Key/Index

Add New Attribute

Add New Lines

Comment Out Code

Remove Attribute

Add New Method Call

ValueError

AttributeError

KeyError

TypeError

NotFoundError

BadRequest

IndexError

ModuleNotFoundError

Fix Syntax Errors
SyntaxError

2/22/25, 5:51 PM sankey.html

file:///Users/ferranz/Desktop/Projects/NotebookAnalysis/JupyterNotebookAnalysis/R_CODE/sankey.html 1/1

(c)Most frequently used fix patterns for fixing errors.

Fig. 7. Analysis of Edit Patterns: Distribution, Co-occurrence, and Usage for Error Fixing.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:13

Our result shows that the most frequent co-occurring fix patterns are Change Parameters (38%),
Add New Method Call (12%), and Rename Variables (12%). This suggests that debugging in data

science is often complex. In terms of correlation of fix patterns and error types, as shown in

Figure 7c, we found that Change Parameters (21%) is the most frequently used fix pattern to fix

various errors. Change Key/Index is effective in fixing IndexError, while Fix Syntax Errors (20%) is
only limited to solve simple errors such as SyntaxError and ModuleNotFoundError. The correlation
between fix patterns and different error types could provide insights for future work as we will

discuss in Section 6.2.

Usefulness of Error Messages in Fixing Errors. One may wonder how useful error messages

are in guiding DS programmers to fix errors. To investigate this, the first author performed a

stratified sampling of 20 error messages for each error type and analyzed their usefulness. We

found that error messages typically contain basic debugging information, such as the line number

and a brief reason for the error. This basic debugging information is more useful for simpler

errors, such as SyntaxError (20/20), ModuleNotFoundError (20/20), and BadRequest (20/20). However,
such information is not as helpful for more complex errors, e.g., NameError (5/20), AttributeError
(3/20), ValueError (2/20), TypeError (5/20), KeyError (6/20), IndexError (4/20), AttributeError (3/20),
etc. For instance, NameError is often caused by incorrect execution order. The error messages

provide limited information about the wrong execution order. Moreover, for errors arising from

unfamiliarity with the dataset, such as ValueError, and IndexError, error messages do not offer data

insights to help programmers better understand their data. For errors often caused by incorrect

API usage, such as AttributeError, error messages usually contain lengthy tracebacks of function

calls, including many third-party exception points that most programmers cannot read or modify.

This may introduce additional noise into the debugging path.

Answer to RQ3.

Among all local fixes, the most common editing strategy to fix errors is Change Parameters
(35%), followed by Fix Syntax Errors (12%), Rename Variable (12%), Change Key/Index (10%), and

Add New Method Call (7%). In addition, DS programmers usually require multiple debugging

iterations (3.59 steps) to fix errors. Most frequent co-occurring fix patterns are Change Pa-
rameters (38%), Add New Method Call (12%), and Rename Variables (12%). The most frequently

used fix pattern is Change Parameters (20%).

5.4 RQ4. Reasons Behind DS Coding Errors and Tool Support
8 out of 10 interviewees mentioned that data preprocessing and data exploration are the most

error-prone stages in the DS workflow. This result is consistent with our previous finding in RQ1

that most errors occur in the early stages of the DS workflow. We then asked follow-up questions

to gain a deeper understanding of these errors. To prevent bias, we didn’t share our findings with

participants beforehand. Instead, we asked them generic questions about common coding errors

in Jupyter notebooks, their debugging and fixing practices, and the challenges they face while

debugging. Below, we use blue highlighting to indicate thematic codes that are relevant to errors

occurring during the DS workflow and the programming practices of DS programmers.

Why data preprocessing is error-prone. One of the main reasons data preprocessing is error-

prone is the data itself. 9 out of 10 participants reported that data is often dirty, including issues like

missing values, incomplete data, and inconsistent data types. Furthermore, 8 out of 10 participants

highlighted the unclear format of the data, including issues such as unclear data size, dimensions, and

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:14 Chen et al.

various file formats. As P7 said, “These datasets can be quite dirty and noisy. One common challenge
is dealing with the unstructured data, which can be more complex than numerical or categorical values.
Analysis becomes challenging due to the irregular formats of the data.” 5 participants mentioned

that lack of domain knowledge can pose difficulties because DS programmers need certain domain

knowledge to transform the data. P5 said, “We need to apply our business rules to check data validity.
Using custom criteria from our domain experts, we can determine if the data quality is acceptable.”
Integrating different data sources could also be challenging (4/10). P9 said, “We need to map different
data, and we often make assumptions, such as using IDs in two tables as the key to join. However,
this can sometimes be problematic.” We also observed some other challenges, such as the large data

size (4/10), the difficulty of automating the data cleaning process (3/10), and the complexity of

transforming unstructured data into a meaningful format (2/10).

Why data exploration is error-prone. 6 out of the 10 participants said unfamiliarity with the

dataset is the reason why exploring data is hard. As P9 said, “This lack of familiarity with data
can cause errors. We might know the column names and values, but without descriptions, it can be
challenging to explore the data effectively.” Also, participants mentioned the dataset might have

too many columns (5/10) and it is hard to decide which features are important (4/10). P10 said,

“We have high-dimensional data, like datasets with 120 columns, which can be tricky to handle. It’s
challenging to decide how to visualize all the features simultaneously.” DS Programmers sometimes

have wrong assumptions about the data (4/10). P8 said, “When I try to explore an entry of what I
believe is a vector, I find out it’s not, and I can’t process it the way I intended. This process is error-prone
and involves a lot of trial and error.” Other challenges include inconsistent data types (3/10) and a

lack of domain knowledge (3/10).

Debugging Practices. DS programmers often use “print” to debug (9/10). Some programmers

search online for debugging help (6/10). Others organize their code into functions and test them

(5/10). When they encounter errors, they read the error logs and trace back to the bug (3/10). They

will execute cells individually to narrow down the errors (3/10) and rerun from the first cell (3/10).

As P10 said, “What I always do is separate my code into parts, dividing it into separate cells. I run the
code sequentially from the first cell to the last. Whenever an error arises, I print the error messages and
then go back to the cell right around the error. I execute and rerun that particular cells until I solve the
problem.” This is similar to the iterative debugging activity observed in RQ2.

Debugging Challenges in Jupyter Notebooks. 6 participants mentioned that large notebooks

can create severe dependency issues, and they need to memorize cell dependencies. As P4 said, “I
do realize cell dependency is an issue because whenever you’re doing a lot of preprocessing, you end up
with numerous columns to memorize and preprocess.” Among all dependency issues, complex variable

dependency issues (4/10) are frequently mentioned. To solve these dependency issues, programmers

usually choose to rerun from the beginning (3/10). P8 said,“You have to rerun everything, which
is time-consuming, especially when debugging and needing to change initial values to find errors.”
Rerunning behavior is also observed in RQ2, indicating that debugging in notebooks might involve

managing complex dependency issues.

Improvement and Opportunity. DS programmers highlighted several areas for improvement.

They emphasized the need for tools to manage complex cell dependencies and track hidden variable

states across multiple executions of cells to prevent unexpected behaviors. Additionally, they desired

features that display the current variable value and on-hover features to display API usage and

variable types. There was also a call for support for breakpoints in notebooks to facilitate more

efficient debugging.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:15

Answer to RQ4.

Data preprocessing and data exploration are the two most error-prone stages in the DS

workflow. DS programmers relied on “print” statements and leveraging cell structure in the

notebooks to narrow down the error. The biggest challenge in debugging is managing cell

dependencies. DS programmers desire better tools to handle these dependencies and more

robust debugging support within the notebook environment.

6 DISCUSSION
6.1 Comparison to Previous Findings
We performed a systematic literature review following the guidelines by Keele et al. [36]. Specifically,

we searched over 28 SE conferences (e.g., ICSE, ESEC/FSE, ASE, ISSTA, ISSRE, etc.) and 20 HCI

conferences (e.g., CHI, UIST, CSCW, etc.). We used 20 search keywords, such as “Data Science”,

“Programming Practice”, “Bug/Error Analysis”, and “Debugging Patterns” to identify related work.

We found 88 related papers that contain at least one of the keywords in their title or abstract.

After manually reviewing these papers, we identified 11 papers focused on DS debugging and

programming challenges. We summarized the comparison in Table 5.

6.2 Implications & Opportunities

Supporting Data-Centric Debugging In DS Programming. In RQ1, we found that most of the

errors occur during the early stages of the data science pipeline, with the majority of them being

identified during the Data Exploration stage (32%), Data Preprocessing stage (26%). In addition,

in RQ4, 8 out of 10 interviewees confirmed that these early stages are more error-prone. They

mentioned that the data is often dirty, and that the data schema is usually complex. Similar issues

have also been observed by Chattopadhyay et al. [17] in which data cleaning is identified as a

major pain point. However, traditional debuggers, such as Python’s pdb, mainly focus on catching

code errors rather than data errors. Although they allow inspection of variable values, they are not

designed to display the contents of large datasets, such as data frames with millions of rows, or to

navigate nested data structures (e.g., multi-layered JSON objects) that are common in data science.

As a result, DS programmers often resort to using “print” statements to understand their data.

Several recent approaches have been proposed to support data-centric debugging. One line of

work focuses on comparing data differences [42, 65, 76]. For example, Diff in the Loop (DITL) [76]

automatically captures snapshots of data tables following code edits and then visualizes the differ-

ences between these snapshots to help users quickly spot unintended program behavior. In contrast

to DITL, data lineage tracking [66, 68] offers a more comprehensive view of data transformation

from raw input to final output by mapping the entire preprocessing workflow. For instance, a data

lineage tracking feature could provide a visual map that details each preprocessing step, such as

cleaning, encoding, and normalization, and show how these steps change the data. Future work

could consider building on these existing approaches to develop an integrated debugging framework

that combines detailed visualization of data differences with a visual representation of the full data

transformation process.

Supporting Iterative Debugging In DS Programming. In RQ2, we observed that DS program-

mers frequently edit and re-run notebook cells multiple times to fix errors. This involves exploring

different code edits or parameter configurations until the error is fixed. As a result, DS programmers

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:16 Chen et al.

Table 5. Comparison with Previous Findings

Category Existing Findings Our Findings in This Work

Bug
Taxonomy

[20] identified a taxonomy of 12 bug types in notebooks,

including kernel bugs, conversion bugs, and portabil-

ity bugs through analysis of Stack Overflow posts and

GitHub bug fix commits.

• We analyzed errors using fine-grained execution

histories rather than relying on coarse-grained data

mined from GitHub and Stack Overflow.

• We identified the distribution of 11 error types

across 10 different DS stages in the DS pipeline.

• Most errors occurred in the early stages of the DS

pipeline, such as the data processing or data explo-

ration stages.

• ValueError and NameError are the most frequently

occurring errors in the context of DS programming.

[86] identified 3 high-level bug types, including API mis-

use, typos, and incorrect data modeling in the data wran-

gling stage.

[5] found 8 high-level bug types, including Coding Bug,

Data Bug, and Logic Bug, in notebooks through mining

Stack Overflow and bug fix commits of GitHub projects.

Debugging
Pattern

[58] identified 7 high-level error identification strategies,

including using search engines, checking assumptions,

and starting over to find pre-seeded Python errors in an

observational user study.

• We identified 12 fine-grained fixing patterns that DS

programmers frequently use to fix errors in Jupyter

Notebooks.

• We found Changing parameterx is the most fre-

quently used fixing pattern.

• Debugging activities focus not only on the erro-

neous cell but also on the overall code flow within

notebooks. Also, the debugging process is iterative.

• We analyzed the correlation between error types

and fix patterns. For instance, we found that chang-
ing parameters fixes various errors, while fixing
syntax errors is limited to solving simpler errors.

[45] identified 7 debugging patterns, including using

stack traces, communication, and comparing versions to

solve cross-project correlated bugs in scientific Python

projects.

[87] identified 29 fixing patterns, including changing

assignment expressions, modifying method calls, and

handling exceptions, used in Python scripting, not DS

code in Jypyter Notebooks.

[25] identified 7 high-level debugging patterns, including

iterative debugging and diff-based debugging, through a

user study involving a multiverse analysis tool.

Qualitative
Studies

[17] identified 9 high-level challenges, including setup,

exploration and analysis, managing code, and reliability

in using notebooks, by interviewing 20 data scientists

and analyzing 156 surveys.

• Compared to previous findings, our study focused

more on debugging challenges in DS programming.

• We found concrete reasons why data preprocessing

and data exploration are more error-prone, which

were not reported by previous studies. For instance,

we found that debugging challenges often stem

from unclear data formats and a lack of domain

knowledge, which complicate the understanding

and transformation of data.

• We confirmed that cell dependency issue is a severe

problem in debugging Jupyter Notebooks, aligning

with results in previous findings [17].

• We found that DS programmers usually execute

cells individually to narrow down the errors, and

sometimes rerun the notebook from the beginning.

[21] identified 10 high-level issues in the reuse and shar-

ing of notebooks, including modularization, versioning,

and data privacy, by interviewing 17 data scientists and

analyzing 132 surveys.

[89] identified 10 high-level challenges in collaboration

among DS workers, including workflow complexity, tool

fragmentation, and lack of documentation, through sur-

veys of 183 data scientists.

[37] identified 10 high-level challenges in exploratory

programming, including difficulties in managing explo-

ration history, usability barriers in programming tools,

and cognitive burden in tracking multiple attempts, by

surveying 60 data scientists.

could benefit from tools that allow them to track and compare various execution states through

these iterative edits. Previously, Weinman et al. [79] proposed Fork It, which allows programmers

to “fork” the execution state of a notebook, and explore different implementation alternatives—an

approach reminiscent of differential testing [22, 27, 46]. However, Fork It still requires programmers

to manually compare different execution paths to identify the deviations. Thus, a promising future

direction is to reduce the manual effort by automatically tracking the edit history and highlighting

differences in intermediate states. Furthermore, existing tools only perform differential analysis on

text outputs. Supporting fine-grained differential analysis on richer types of outputs, such as data

tables and plots, remains an interesting future direction.

Understanding and Leveraging Repair Patterns for Debugging in DS Programming. In
RQ3, we identified various fixing patterns, including Change Parameters (35%), Fix Syntax Errors
(12%), and Rename Variable (12%). We also identified the correlation between the fixing patterns

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:17

and errors. For example, Change Parameters was frequently used in resolving various errors, while

Change Key/Index was more effective in fixing IndexError. These insights could inform the future

development of more fine-grained automated debugging tools. One promising direction is improving

Automated Program Repair (APR) in DS programming. Although recent LLM-based APR tools [82],

such as AlphaRepair [83], have shown state-of-the-art performance in generating fix patches for

buggy programs, they primarily focus on syntax and logic errors rather than data-centric errors.

However, errors in DS programming usually stem from data errors, such as missing values and

incorrect data types. To support program repair for DS programs, an APR tool should leverage the

data schema and data dependencies in addition to the program dependencies and execution history.

For example, future APR tools could incorporate richer data context, such as the meaning of the

data being processed, and the dataset characteristics.

Managing Cell Dependencies in Notebooks. In RQ4, our interview study with 10 DS program-

mers revealed additional insights into the challenges faced by DS programmers and potential areas

for improvement. Participants highlighted the complexity of cell dependencies in large notebooks

(6/10) and the need to memorize these dependencies (6/10). This finding aligns with our obser-

vations in RQ2. Some recent work has leveraged dataflow analysis to examine cell dependencies,

reconstructing execution orders using a Cell Dependency Graph (CDG) to enhance notebook repro-

ducibility [77]. However, this approach primarily focuses on execution order reconstruction. It lacks

a visualization or interactive UI for programmers to navigate and understand the dependency, track

variable flows, and adjust execution sequences without the need for memorization. Incorporating

interactive cell dependency visualization in Jupyter Notebooks to explore and adjust execution

sequences would be an interesting direction for future work.

7 THREATS TO VALIDITY
Internal Validity. Our study involves some manual analysis. The manual analysis tasks in RQ1

and RQ2 include removing erroneous cells from the same origin, classifying the DS stage of each

erroneous cell, and identifying the corresponding fixed cell of each erroneous cell. These tasks are

simple and straightforward. Thus, we do not think the subjectivity of manual analysis would be a

big threat to internal validity. However, the manual analysis in RQ3, which involves open coding

and pattern summarization, is more open-ended and thus can be affected by personal experiences

and biases. To mitigate this threat, two authors first independently performed the open coding and

worked together to summarize the patterns. A third author who was not involved in the manual

inspection process further validated the inferred patterns.

Another potential threat to internal validity is that we only focused on erroneous cells that

produced compilation or runtime errors. These errors typically produced error messages and error

types that are easier to detect. Other errors such as logic errors or errors producing wrong graphs

are more difficult to identify. It requires a deeper analysis of deviations from expected behavior or

user studies to understand how developers identify and resolve silent failures in practice. Finally,

we down-sample 6 notebooks per participant because the average number of submissions per

participant is 5.86, which is close to 6. To ensure that the exclusion of some notebooks does not

introduce bias in error type distributions, we conducted a Wilcoxon Signed-rank test to compare

error type distributions between the analyzed and excluded datasets. We found that the difference

is not statistically significant (𝑝-value=0.9588). We provided analysis results in our anonymous repo

at https://anonymous.4open.science/r/FSE2025-62D6/DataAnalysis/error_type_distribution.pdf.

External Validity. One potential threat to external validity is that we only analyzed Python code

written in Jupyter notebooks. We cannot guarantee that our findings are generalizable to other

programming languages and programming environments in data science, such as R code in R

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

https://anonymous.4open.science/r/FSE2025-62D6/DataAnalysis/error_type_distribution.pdf

FSE082:18 Chen et al.

Markdown notebooks. Another threat to validity is that we observed some task-dependent errors,

such as NotFoundError and BadRequestError in our competition setting. While it is common for DS

programmers to use cloud APIs to access their datasets [49], certain errors may not occur when

the dataset is downloaded and analyzed locally. Another potential threat to validity is that the

participants were not familiar with the dataset in the DS competition. While this mirrored the real-

world scenarios where data scientists frequently work with new datasets and spend considerable

time cleaning data [16, 18, 19, 26, 28, 34], we did not fully capture the error patterns that emerge

when practitioners have already developed extensive experience with specific datasets. Moreover,

the competition in our study focused on building a prediction model. While prediction tasks

are common in data science, the error distribution identified in our study may not generalize to

other tasks such as exploratory analysis and insight discovery, which emphasize more on the data

exploration and visualization steps in the data science pipeline.

8 RELATEDWORK
8.1 Empirical Studies on Data Science Practices
To gain insights into DS programmers’ coding practices, researchers have conducted empirical

studies analyzing code mined from Kaggle or GitHub [12, 24, 29, 33, 56, 59, 73, 90]. For instance,

Ramasamy et al. [56] analyzed the workflow of DS programmers by mining notebooks on GitHub.

Their analysis focused on providing evidence of the iterative nature of data science. In our study,

we used workflow analysis to discover the debugging activities of different debugging operations.

Biswas et al. [12] studied the data science pipeline in three different settings: theory, in-the-small,

and in-the-large. They identified the most representative pipelines in each setting and characterized

them. In contrast, our study focused more on identifying the characteristics of the errors that

DS programmers made in each data science stage rather than on identifying different pipelines.

Grotov et al. [24] revealed the structural and stylistic differences between Python scripts and

Jupyter Notebooks. Vidoni et al.[73] investigated self-admitted technical debt in R. Islam et al. [29]

examined the executability of R Markdown files mined from GitHub. Compared to previous work,

our work focused more on the programming mistakes that DS programmers make when using

Jupyter Notebooks because we are particularly interested in understanding how data science

programmers make errors in cell-oriented and out-of-order execution environments [67].

There are also several qualitative studies that investigate the practices of DS programmers through

interviews and surveys [13, 17, 21, 37, 58, 89]. For instance, Zhang et al. [89] conducted a large-

scale survey on how DS programmers work and cooperate in a large corporation. Chattopadhyay

et al. [17] conducted a mixed-method study to identify pain points for DS programmers using

computational notebooks. Epperson et al. [21] examined DS programmers’ sharing and reuse

practices, highlighting five prevalent strategies that promote or hinder reuse. Kery et al. [37]

conducted interviews to investigate the exploratory programming practices of DS programmers.

Robinson et al. [58] conducted an observational study on how DS programmers identify potential

errors in Python Jupyter notebooks.

The most relevant research to ours has been conducted by Santana et al. [20], and Ahmed et al. [5].

They performed a bug analysis of data analytical programs mined from GitHub and Stack Overflow,

mainly focusing on the types and characteristics of bugs. However, their results failed to identify

debugging activities or bugs fixed before git commits. In contrast, our approach focuses on how DS
programmers debug and fix errors, an aspect that has remained largely unexplored in the existing

literature. We accomplish this using notebook and system logs to restore all execution histories.

Additionally, we examine bug distribution across data science stages. Finally, our fine-grained

dataset enables us to provide error-fixing efforts for each error using GumTree [23].

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:19

8.2 Tool Support for Data Science
The research community has developed various tools to enhance different aspects of the data

science workflow. Vizsmith [8] enables code reuse for visualizations by mining visualization code

from Kaggle notebooks. Vu et al. [74] introduced a semi-automated method for reducing input data

in workflows while maintaining specified outcomes. CombyInferPy [48] automatically analyzes

new changes in data science library APIs, facilitating the update of large projects to newer library

versions. DSInfoSearch [64] supports the experimentation process by providing context-aware

ranked data science experiments. Yang et al. [86] created WRANGLEDOC using program synthesis

to help DS programmers generate documentation for their data-wrangling code. Later, Yang et

al. [85] developed a static analysis approach to detect common forms of data leakage in data science

code. Safe-DS [57] offers a domain-specific language for data science that can catches common

type errors. Subotić et al. [67] proposed a framework for static analysis of notebooks. SOAR [50]

introduces a synthesis approach for data science API refactoring that requires no training data.

Despite the significant advancements in the research community, a notable scarcity of tools

to help DS programmers debug remains. As observed by Chattopadhyay et al.[17] in their user

study, DS programmers frequently encounter challenges tracing code flow due to the out-of-order

execution properties inherent in notebooks [67]. This can lead to dependency issues and cause errors

propagating through subsequent cells, ultimately leading to “dependency hell” in the notebooks.

To improve debugging support for DS programmers, it is essential first to understand their

debugging activities. However, previous studies have only examined code from GitHub or Kaggle,

which misses crucial details on how DS programmers test and edit cells in situ. Git commits only

provide a static snapshot of users’ behavior rather than their real-time behavior. In contrast, our

study is the first to address this by creating a fine-grained dataset to identify common errors across

data science stages, analyze editing patterns, and model debugging traces of data science code.

8.3 Error Analysis of Other Kinds of Programs
There are also growing interests of error analysis covering various kinds of applications, such

as machine learning [5, 30, 69, 90], mobile applications [6, 11, 91], web applications [51, 52, 62],

operating systems [4, 31, 44], and blockchain-based systems [75]. Furthermore, there are several

curated datasets of real-world software bugs. For example, Defects4J [32] contains 395 Java bugs,

Bugs.jar [61] includes 1,158 Java bugs along with their fixes, ManyBugs dataset [43] holds 185 C

language bugs, and BugsInPy [80] which documents 493 bugs in Python programs. Recently, there

have been larger datasets such as ManySStuBs4J [35], which consist of 153,652 bugs.

Despite these efforts, there is a notable lack of research focusing on the errors made by DS

programmers using Jupyter Notebook. Our research aims to bridge this gap by analyzing fine-

grained debugging activities of DS programmers within the Jupyter Notebook [39], which differs

from traditional programming IDEs. Furthermore, prior error analyses have focused on identifying

bug types [20]. By contrast, we explore various facets, such as common errors in different stages,

editing patterns, and debugging activities when using Jupyter Notebook.

9 CONCLUSION
In this study, we investigated the fine-grained debugging patterns of data science programmers. We

examined the internal logs of each notebook from a six-week DS competition. These logs contained

a total of 390 Jupyter Notebooks, authored by 67 participants over six weeks. This detailed data,

covering all code changes, cell execution order, and output logs, provided us with an in-depth

view of data science programming practices by identifying different facets of debugging practices,

including common errors across different data science stages, editing patterns, and debugging

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:20 Chen et al.

activities. In addition, we conducted semi-structured interviews with 10 DS programmers from

both industry and academia to understand the reasons behind these coding errors. Our study is

the first to investigate the fine-grained debugging activities of data science programming within

Jupyter Notebook. It provides implications for developing more effective data science support tools,

offering a more comprehensive understanding of debugging practices of DS programmers.

10 DATA AVAILABILITY
The code and data have beenmade publicly available at https://anonymous.4open.science/r/FSE2025-

62D6

REFERENCES
[1] The data scientist profile 2019 - skills, experience, education of 1,001 data scientists. https://365datascience.com/career-

advice/career-guides/data-scientist-profile/, 2019.

[2] Ipython. https://ipython.readthedocs.io/, 2024.

[3] Jupyter notebook. https://jupyter.org/, 2024.

[4] Abal, I., Brabrand, C., and Wasowski, A. 42 variability bugs in the linux kernel: a qualitative analysis. In Proceedings
of the 29th ACM/IEEE international conference on Automated software engineering (2014), pp. 421–432.

[5] Ahmed, S., Wardat, M., Bagheri, H., Cruz, B. D., and Rajan, H. Characterizing bugs in python and r data analytics

programs. arXiv preprint arXiv:2306.08632 (2023).
[6] Al Rahat, T., Feng, Y., and Tian, Y. Oauthlint: An empirical study on oauth bugs in android applications. In 2019

34th IEEE/ACM International Conference on Automated Software Engineering (ASE) (2019), IEEE, pp. 293–304.
[7] Alaboudi, A., and LaToza, T. D. What constitutes debugging? an exploratory study of debugging episodes. Empirical

Software Engineering 28, 5 (2023), 117.
[8] Bavishi, R., Laddad, S., Yoshida, H., Prasad, M. R., and Sen, K. Vizsmith: Automated visualization synthesis by

mining data-science notebooks. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE) (2021), IEEE, pp. 129–141.

[9] Beller, M., Spruit, N., Spinellis, D., and Zaidman, A. On the dichotomy of debugging behavior among programmers.

In Proceedings of the 40th International Conference on Software Engineering (2018), pp. 572–583.

[10] Berg, B. L. Qualitative research methods for the social sciences. Allyn & Bacon, 2001.

[11] Bhattacharya, P., Ulanova, L., Neamtiu, I., and Koduru, S. C. An empirical analysis of bug reports and bug fixing

in open source android apps. In 2013 17th European Conference on Software Maintenance and Reengineering (2013),

IEEE, pp. 133–143.

[12] Biswas, S., Wardat, M., and Rajan, H. The art and practice of data science pipelines: A comprehensive study of

data science pipelines in theory, in-the-small, and in-the-large. In Proceedings of the 44th International Conference on
Software Engineering (2022), pp. 2091–2103.

[13] Bodwin, K. N., Siaca, I. F., McNamara, A., Burckhardt, P., Theobold, A., Abdel-Ghani, A., and Wilson, G. "looks

okay to me": A study of best practice in data analysis code review. ICOTS (2022).
[14] Braun, V., and Clarke, V. Using thematic analysis in psychology. Qualitative research in psychology 3, 2 (2006),

77–101.

[15] Cai, C. J., and Guo, P. J. Software developers learning machine learning: Motivations, hurdles, and desires. In 2019
IEEE symposium on visual languages and human-centric computing (VL/HCC) (2019), IEEE, pp. 25–34.

[16] Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T., and Vo, H. T. Vistrails: visualization meets

data management. In Proceedings of the 2006 ACM SIGMOD international conference on Management of data (2006),
pp. 745–747.

[17] Chattopadhyay, S., Prasad, I., Henley, A. Z., Sarma, A., and Barik, T. What’s wrong with computational notebooks?

pain points, needs, and design opportunities. In Proceedings of the 2020 CHI conference on human factors in computing
systems (2020), pp. 1–12.

[18] Chopra, B., Fariha, A., Gulwani, S., Henley, A. Z., Perelman, D., Raza, M., Shi, S., Simmons, D., and Tiwari, A.

Cowrangler: Recommender system for data-wrangling scripts. In Companion of the 2023 International Conference on
Management of Data (2023), pp. 147–150.

[19] Dasu, T., and Johnson, T. Exploratory data mining and data cleaning. John Wiley & Sons, 2003.

[20] de Santana, T. L., Neto, P. A. d. M. S., de Almeida, E. S., and Ahmed, I. Bug analysis in jupyter notebook projects:

An empirical study. ACM Transactions on Software Engineering and Methodology (2022).

[21] Epperson, W., Wang, A. Y., DeLine, R., and Drucker, S. M. Strategies for reuse and sharing among data scientists in

software teams. In Proceedings of the 44th International Conference on Software Engineering: Software Engineering in

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

https://anonymous.4open.science/r/FSE2025-62D6
https://anonymous.4open.science/r/FSE2025-62D6

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:21

Practice (2022), pp. 243–252.
[22] Evans, R. B., and Savoia, A. Differential testing: a new approach to change detection. In The 6th Joint Meeting on

European software engineering conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering:
Companion Papers (2007), pp. 549–552.

[23] Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., and Monperrus, M. Fine-grained and accurate source code

differencing. In Proceedings of the 29th ACM/IEEE international conference on Automated software engineering (2014),

pp. 313–324.

[24] Grotov, K., Titov, S., Sotnikov, V., Golubev, Y., and Bryksin, T. A large-scale comparison of python code in

jupyter notebooks and scripts. In Proceedings of the 19th International Conference on Mining Software Repositories
(2022), pp. 353–364.

[25] Gu, K., Jun, E., and Althoff, T. Understanding and supporting debugging workflows in multiverse analysis. In

Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (2023), pp. 1–19.
[26] Gulwani, S. Programming by examples-and its applications in data wrangling. In Dependable Software Systems

Engineering. IOS Press, 2016, pp. 137–158.
[27] Gulzar, M. A., Zhu, Y., and Han, X. Perception and practices of differential testing. In 2019 IEEE/ACM 41st International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (2019), IEEE, pp. 71–80.
[28] Huang, J., Guo, D., Wang, C., Gu, J., Lu, S., Inala, J. P., Yan, C., Gao, J., Duan, N., and Lyu, M. R. Contextualized

data-wrangling code generation in computational notebooks. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering (2024), pp. 1282–1294.

[29] Islam, M. A., Asaduzzman, M., and Wang, S. On the executability of r markdown files. In 2024 IEEE/ACM 21st
International Conference on Mining Software Repositories (MSR) (2024), IEEE, pp. 254–264.

[30] Islam, M. J., Nguyen, G., Pan, R., and Rajan, H. A comprehensive study on deep learning bug characteristics. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (2019), pp. 510–520.

[31] Jimenez, M., Papadakis, M., and Le Traon, Y. An empirical analysis of vulnerabilities in openssl and the linux kernel.

In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC) (2016), IEEE, pp. 105–112.
[32] Just, R., Jalali, D., and Ernst, M. D. Defects4j: A database of existing faults to enable controlled testing studies for

java programs. In Proceedings of the 2014 international symposium on software testing and analysis (2014), pp. 437–440.
[33] Källén, M., Sigvardsson, U., and Wrigstad, T. Jupyter notebooks on github: characteristics and code clones. The

Art, Science, and Engineering of Programming 5, 3 (2021).
[34] Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. Wrangler: Interactive visual specification of data transformation

scripts. In Proceedings of the sigchi conference on human factors in computing systems (2011), pp. 3363–3372.
[35] Karampatsis, R.-M., and Sutton, C. How often do single-statement bugs occur? the manysstubs4j dataset. In

Proceedings of the 17th International Conference on Mining Software Repositories (2020), pp. 573–577.
[36] Keele, S., et al. Guidelines for performing systematic literature reviews in software engineering. Tech. rep., Technical

report, ver. 2.3 ebse technical report. ebse, 2007.

[37] Kery, M. B., and Myers, B. A. Exploring exploratory programming. In 2017 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (2017), IEEE, pp. 25–29.

[38] Kim, M., Zimmermann, T., DeLine, R., and Begel, A. The emerging role of data scientists on software development

teams. In Proceedings of the 38th International Conference on Software Engineering (2016), pp. 96–107.

[39] Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J. B.,

Grout, J., Corlay, S., et al. Jupyter notebooks-a publishing format for reproducible computational workflows. Elpub
2016 (2016), 87–90.

[40] Knuth, D. E. Literate programming. The computer journal 27, 2 (1984), 97–111.
[41] Kotti, Z., Gousios, G., and Spinellis, D. Impact of software engineering research in practice: A patent and author

survey analysis. IEEE Transactions on Software Engineering 49, 4 (2022), 2020–2038.
[42] Law, P.-M., Basole, R. C., and Wu, Y. Duet: Helping data analysis novices conduct pairwise comparisons by minimal

specification. IEEE transactions on visualization and computer graphics 25, 1 (2018), 427–437.
[43] Le Goues, C., Holtschulte, N., Smith, E. K., Brun, Y., Devanbu, P., Forrest, S., and Weimer, W. The manybugs and

introclass benchmarks for automated repair of c programs. IEEE Transactions on Software Engineering 41, 12 (2015),
1236–1256.

[44] Lin, Z., Chen, Y., Wu, Y., Mu, D., Yu, C., Xing, X., and Li, K. Grebe: Unveiling exploitation potential for linux kernel

bugs. In 2022 IEEE Symposium on Security and Privacy (SP) (2022), IEEE, pp. 2078–2095.
[45] Ma, W., Chen, L., Zhang, X., Zhou, Y., and Xu, B. How do developers fix cross-project correlated bugs? a case study

on the github scientific python ecosystem. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE) (2017), IEEE, pp. 381–392.

[46] McKeeman, W. M. Differential testing for software. Digital Technical Journal 10, 1 (1998), 100–107.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

FSE082:22 Chen et al.

[47] McKinney, W., et al. pandas: a foundational python library for data analysis and statistics. Python for high performance
and scientific computing 14, 9 (2011), 1–9.

[48] Mitchell, H. Automatically fixing breaking changes of data science libraries. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (2022), pp. 1–3.

[49] Mooney, P. T. Kaggle survey 2022: All results, 2022. Accessed: 2025.

[50] Ni, A., Ramos, D., Yang, A. Z., Lynce, I., Manqinho, V., Martins, R., and Le Goues, C. Soar: a synthesis approach

for data science api refactoring. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (2021),
IEEE, pp. 112–124.

[51] Ocariza, F., Bajaj, K., Pattabiraman, K., and Mesbah, A. An empirical study of client-side javascript bugs. In 2013
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (2013), IEEE, pp. 55–64.

[52] Ocariza Jr, F. S., Pattabiraman, K., and Zorn, B. Javascript errors in the wild: An empirical study. In 2011 IEEE 22nd
International Symposium on Software Reliability Engineering (2011), IEEE, pp. 100–109.

[53] Oh,W., and Oh, H. Pyter: effective program repair for python type errors. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (2022), pp. 922–934.

[54] Peng, Y., Gao, S., Gao, C., Huo, Y., and Lyu, M. Domain knowledge matters: Improving prompts with fix templates

for repairing python type errors. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering
(2024), pp. 1–13.

[55] Raghunandan, D., Roy, A., Shi, S., Elmqvist, N., and Battle, L. Code code evolution: Understanding how people

change data science notebooks over time. arXiv preprint arXiv:2209.02851 (2022).
[56] Ramasamy, D., Sarasua, C., Bacchelli, A., and Bernstein, A. Workflow analysis of data science code in public

github repositories. Empirical Software Engineering 28, 1 (2023), 1–47.
[57] Reimann, L., and Kniesel-Wünsche, G. Safe-ds: A domain specific language to make data science safe. In 2023

IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER) (2023),
IEEE, pp. 72–77.

[58] Robinson, D., Ernst, N. A., Vargas, E. L., and Storey, M.-A. D. Error identification strategies for python jupyter

notebooks. In Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension (2022), pp. 253–263.
[59] Rule, A., Tabard, A., and Hollan, J. D. Exploration and explanation in computational notebooks. In Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems (2018), pp. 1–12.
[60] Runeson, P., and Höst, M. Guidelines for conducting and reporting case study research in software engineering.

Empirical software engineering 14 (2009), 131–164.
[61] Saha, R. K., Lyu, Y., Lam, W., Yoshida, H., and Prasad, M. R. Bugs. jar: A large-scale, diverse dataset of real-world

java bugs. In Proceedings of the 15th international conference on mining software repositories (2018), pp. 10–13.
[62] Selakovic, M., and Pradel, M. Performance issues and optimizations in javascript: an empirical study. In Proceedings

of the 38th International Conference on Software Engineering (2016), pp. 61–72.

[63] Shull, F., Singer, J., and Sjøberg, D. I. Guide to advanced empirical software engineering, vol. 93. Springer, 2008.
[64] Sivasothy, S. Dsinfosearch: supporting experimentation process of data scientists. In 2021 36th IEEE/ACM International

Conference on Automated Software Engineering (ASE) (2021), IEEE, pp. 1033–1037.
[65] Srinivasan, A., Brehmer, M., Lee, B., and Drucker, S. M. What’s the difference? evaluating variations of multi-series

bar charts for visual comparison tasks. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (2018), pp. 1–12.

[66] Stitz, H., Gratzl, S., Piringer, H., Zichner, T., and Streit, M. Knowledgepearls: Provenance-based visualization

retrieval. IEEE Transactions on Visualization and Computer Graphics 25, 1 (2018), 120–130.
[67] Subotić, P., Milikić, L., and Stojić, M. A static analysis framework for data science notebooks. In Proceedings of the

44th International Conference on Software Engineering: Software Engineering in Practice (2022), pp. 13–22.
[68] Tang, M., Shao, S., Yang, W., Liang, Y., Yu, Y., Saha, B., and Hyun, D. Sac: A system for big data lineage tracking. In

2019 IEEE 35th International Conference on Data Engineering (ICDE) (2019), IEEE, pp. 1964–1967.
[69] Thung, F., Wang, S., Lo, D., and Jiang, L. An empirical study of bugs in machine learning systems. In 2012 IEEE 23rd

International Symposium on Software Reliability Engineering (2012), IEEE, pp. 271–280.

[70] Tukey, J. W., et al. Exploratory data analysis, vol. 2. Springer, 1977.
[71] Van Der Aalst, W., and van der Aalst, W. Data science in action. Springer, 2016.
[72] VanDerWalt, S., Colbert, S. C., andVaroqaux, G. The numpy array: a structure for efficient numerical computation.

Computing in science & engineering 13, 2 (2011), 22–30.
[73] Vidoni, M. Self-admitted technical debt in r packages: An exploratory study. In 2021 IEEE/ACM 18th International

Conference on Mining Software Repositories (MSR) (2021), IEEE, pp. 179–189.
[74] Vu, A. D., Kehrer, T., and Tsigkanos, C. Outcome-preserving input reduction for scientific data analysis workflows.

In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (2022), pp. 1–5.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

Towards Understanding Fine-Grained Programming Mistakes and Fixing Patterns in Data Science FSE082:23

[75] Wan, Z., Lo, D., Xia, X., and Cai, L. Bug characteristics in blockchain systems: a large-scale empirical study. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR) (2017), IEEE, pp. 413–424.

[76] Wang, A. Y., Epperson, W., DeLine, R. A., and Drucker, S. M. Diff in the loop: Supporting data comparison in

exploratory data analysis. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (2022),
pp. 1–10.

[77] Wang, J., Kuo, T.-y., Li, L., and Zeller, A. Assessing and restoring reproducibility of jupyter notebooks. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software Engineering (2020), pp. 138–149.

[78] Wang, J., Li, L., and Zeller, A. Better code, better sharing: on the need of analyzing jupyter notebooks. In Proceedings
of the ACM/IEEE 42nd international conference on software engineering: new ideas and emerging results (2020), pp. 53–56.

[79] Weinman, N., Drucker, S. M., Barik, T., and DeLine, R. Fork it: Supporting stateful alternatives in computational

notebooks. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (New York, NY, USA,

2021), CHI ’21, Association for Computing Machinery.

[80] Widyasari, R., Sim, S. Q., Lok, C., Qi, H., Phan, J., Tay, Q., Tan, C., Wee, F., Tan, J. E., Yieh, Y., et al. Bugsinpy: A

database of existing bugs in python programs to enable controlled testing and debugging studies. In Proceedings of
the 28th ACM joint meeting on european software engineering conference and symposium on the foundations of software
engineering (2020), pp. 1556–1560.

[81] Williams, M., and Moser, T. The art of coding and thematic exploration in qualitative research. International
management review 15, 1 (2019), 45–55.

[82] Xia, C. S., Wei, Y., and Zhang, L. Automated program repair in the era of large pre-trained language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE) (2023), IEEE, pp. 1482–1494.

[83] Xia, C. S., and Zhang, L. Less training, more repairing please: revisiting automated program repair via zero-shot

learning. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (2022), pp. 959–971.

[84] Xie, Y., Allaire, J. J., and Grolemund, G. R markdown: The definitive guide. CRC Press, 2018.

[85] Yang, C., Brower-Sinning, R. A., Lewis, G., and Kästner, C. Data leakage in notebooks: Static detection and better

processes. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (2022),

pp. 1–12.

[86] Yang, C., Zhou, S., Guo, J. L., and Kästner, C. Subtle bugs everywhere: Generating documentation for data wrangling

code. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE) (2021), IEEE, pp. 304–
316.

[87] Yang, Y., He, T., Feng, Y., Liu, S., and Xu, B. Mining python fix patterns via analyzing fine-grained source code

changes. Empirical Software Engineering 27, 2 (2022), 48.
[88] Zannier, C., Melnik, G., and Maurer, F. On the success of empirical studies in the international conference on

software engineering. In Proceedings of the 28th international conference on Software engineering (2006), pp. 341–350.

[89] Zhang, A. X., Muller, M., and Wang, D. How do data science workers collaborate? roles, workflows, and tools.

Proceedings of the ACM on Human-Computer Interaction 4, CSCW1 (2020), 1–23.

[90] Zhang, Y., Chen, Y., Cheung, S.-C., Xiong, Y., and Zhang, L. An empirical study on tensorflow program bugs. In

Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (2018), pp. 129–140.
[91] Zhou, B., Neamtiu, I., and Gupta, R. A cross-platform analysis of bugs and bug-fixing in open source projects:

Desktop vs. android vs. ios. In Proceedings of the 19th International Conference on Evaluation and Assessment in Software
Engineering (2015), pp. 1–10.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE082. Publication date: July 2025.

	Abstract
	1 Introduction
	2 Background
	3 Research Questions
	4 Methodology
	4.1 Data Collection
	4.2 Programming Error Identification and Analysis
	4.3 Debugging Activity Analysis
	4.4 Fixing Pattern Analysis
	4.5 Interview Study

	5 Results
	5.1 RQ1. Common Errors Made by DS programmers
	5.2 RQ2. Debugging Activities
	5.3 RQ3. Fixing Patterns Used To Fix Errors
	5.4 RQ4. Reasons Behind DS Coding Errors and Tool Support

	6 Discussion
	6.1 blackComparison to Previous Findings
	6.2 Implications & Opportunities

	7 Threats to Validity
	8 Related Work
	8.1 Empirical Studies on Data Science Practices
	8.2 Tool Support for Data Science
	8.3 Error Analysis of Other Kinds of Programs

	9 Conclusion
	10 DATA AVAILABILITY
	References

